The field of Computational and Applied Math is part of the broader discipline known as Computational Science and Engineering (CS&E) which aims to address important problems in all areas of science and engineering by mathematical modeling and scientific computing. Students in this master’s program learn both analytical and numerical methods of applied math and apply them in the context of mathematical modeling to problems arising from physics, biology, engineering, economics, finance, Earth and climate sciences, and the like. Students with undergraduate degrees in engineering, the sciences, economics, etc. can also be considered for admission to this program provided that they have completed multivariate/vector calculus, differential equations, linear algebra, and numerical methods (including programing languages, such as MATLAB) as part of their undergraduate studies.

Admission policies are detailed in the

section of the Bulletin.

## Degree Requirements

A minimum of 32 units of graduate coursework is required, including four core courses (16 units) and two restricted electives (8 units), as outlined below. Students who lack the prerequisite undergraduate coursework may be asked to complete more than 32 units. At least 20 units of coursework must be gamma courses–that is, 300-level and above. A grade of B- or above must be earned in gamma courses.

**Satisfactory Academic Progress: **The University’s policy on satisfactory academic progress applies. Students who do not maintain a minimum overall grade point average of 3.0 in Mathematics courses are placed on academic probation. Students who remain on academic probation after taking an additional 8 units of Mathematics courses may be excluded from the program.

**Advising: **Students are assigned an academic advisor upon entering the program.

**Outline:**

- Requires 8 graduate math courses (32 credits), at least 5 of which (20 credits) must be at the 300-level or higher.
- Must include the following 4 core requirements
- Math 294 Methods of Applied Mathematics (waived if the student has had equivalent preparation: complex variables, vector calculus, Fourier series/transforms, and PDEs)
- Math 368 Numerical Methods for Matrix Computations
- Math 362 Numerical Methods for Differential Equations
- Math 388 Continuous Mathematical Modeling, or Math 387 Discrete Mathematical Modeling

- 2 restricted electives from the following list (not all these courses are offered every year)
- Any of the core courses listed above if not taken to satisfy the core requirements
- Math 293-393 Mathematics Clinic
- Math 256 Stochastic Processes
- Math 306 Optimization
- Math 354 Reliability Theory
- Math 357 Deterministic and Stochastic Control
- Math 358 Mathematical Finance
- Math 359 Simulation
- Math 381 Fluid Dynamics
- Math 382 Perturbation and Asymptotic Analysis
- Math 384 Advanced Partial Differential Equations
- Math 385 Mathematical Modeling in Biology
- Math 386 Image Processing
- Math 389 Advanced Topics in Mathematics (if appropriate, with advisor’s approval)

- In lieu of one formal course, the student may take Math 398 Independent Study with a research advisor leading to a publication quality technical report in an area of computational or applied math.